
Dead Code, the Law, and Unintended Consequences | Michael Barr

experts.barrgroup.com | Copyright Barr Group. All rights reserved.

Dead Code, the Law, and Unintended Consequences

By Michael Barr

What is Dead Code?

Dead code is source code that is not executed in the
final system.

Dead code comes in two forms. First, there is dead
code that is commented out or removed via #ifdef’s.
That dead code has no corresponding form in the
binary. Other form of dead code is present in the
binary but cannot be or is never invoked.

In either case, dead code is a vestige or unnecessary
part of the product.

The Legal Consequences of Dead Code

Dead code has been frequently encountered when
conducting source code reviews for litigation. The
presence of dead code can have unintended legal
consequences and several scenarios have been
observed in which dead code heightened the
probability of a loss in court.

Scenario 1: Dead code implements part (or all) of
the algorithm.

When a patent infringement suit is brought against an
electronics or software company, one or more
versions of the involved product's relevant source
code must be produced to the plaintiff's legal team.

Both the patent owner’s and the plaintiff's expert(s)
will examine the source code(s) to identify portions of
the code that implement each part of the algorithm.
If one of the identified parts is implemented in dead
code that becomes part of the binary, the product
may still infringe an asserted claim of the patent–
even if it is never invoked.

Tip: It is left to the legal teams to determine if
dead code does legally infringe. However, it is

possible that neither side’s software expert(s)
will notice it is dead. It is also possible that the
judge or jury won’t be convinced by a dead code
defense.

Scenario 2: Dead code leads to overly-complex and
vulnerable code.

In cases such as a product liability suit involving injury
or death, a software expert examining the source
code may use poor code quality as a basis of their
opinion. This scenario can occur when the reviewed
source code is overly-complex and riddled with
commented out code and/or preprocessing
directives.

Source code that is hard to read is harder to maintain.
Code that is hard to read and maintain is also more
likely to contain bugs. In such a scenario, the
defendant's engineering team may appear to be
sloppy or incompetent to the jury.

Tip: Overly-complex code also increases the cost
of source code reviews – as both side’s experts
will need to spend more time examining the
code to understand it fully.

In a source code copyright (or copyleft) suit the mere
presence of another party’s source code may be
sufficient to prove infringement–even if it is isn’t
actually built into the binary.

Tip: Litigators should be aware that developers
of electronics and software products are at risk
of code containing files or functions of open
source software that, by their mere existence in
the source code, attaches an open source
license to all of the proprietary code.

